A Zirconoxy Carbene from Monocarbonylbis(η-cyclopentadienyl)tungsten and Permethylzirconocene Dihydride: $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}=\mathbf{C}(\mathbf{H}) \mathrm{OZr}(\mathrm{H})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}^{*}$

By P. T. Wolczanski, R. S. Threlkel and B. D. Santarsiero \dagger
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA

(Received 7 March 1983; accepted 1 June 1983)

Abstract

C}_{31} \mathrm{H}_{42} \mathrm{OWZr}, \quad M_{r}=705.75\), monoclinic, $P 2_{1} / n, \quad a=10.178$ (3) , $\quad b=35.611$ (14), $\quad c=$ 8.293 (2) $\AA, \beta=109.93(2)^{\circ}, V=2825(2) \AA^{3}, Z=4$, $D_{x}=1.66 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$, $\mu=45 \mathrm{~cm}^{-1}, \quad T \approx 290 \mathrm{~K}, \quad F(000)=1400 ; R=0.054$ for the 4584 reflections with $F_{o}^{2}>0$ and 0.033 for the 3377 reflections with $F_{o}^{2}>3 \sigma_{F^{2}}$ The short $\mathrm{W}-\mathrm{C}$ bond length of 2.008 (7) \AA, moderately long $\mathrm{C}=\mathrm{O}$ bond length of 1.350 (8) \AA, and relatively short $\mathrm{Zr}-\mathrm{O}$ bond length of 1.970 (4) \AA suggest a strong $W=C$ bond, a strong $\mathrm{Zr}-\mathrm{O}$ bond, and a reduced $\mathrm{C}-\mathrm{O} \pi$ interaction, reflecting π backbonding from the electron-rich $\mathrm{Cp}_{2} \mathrm{~W}$ moiety and π donation to the electron-poor (η^{5} $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}$ group. The $\mathrm{Zr}-\mathrm{H}$ bond length is 1.93 (4) \AA.

Introduction. Permethylzirconocene dihydride, (η^{5} $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{ZrH}_{2}$, reduces CO stoichiometrically under mild conditions. Likewise, metal monocarbonyls react with the dihydride to generate zirconoxy carbenes. Here, we report the single-crystal X-ray structure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}=\mathrm{C}(\mathrm{H}) \mathrm{OZr}(\mathrm{H})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}$, the product from the reaction of $\mathrm{Cp}_{2} \mathrm{~W}(\mathrm{CO})\left(\mathrm{Cp}: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{ZrH}_{2}$. The synthesis (Wolczanski, 1981) and a preliminary report of the X-ray structure have been published (Wolczanski, Threlkel \& Bercaw, 1979).

Experimental. Maroon crystals, air-sensitive. Specimen, $0.3 \times 0.3 \times 0.5 \mathrm{~mm}$, sealed in glass capillary under N_{2}. Space group by oscillation and Weissenberg photographs, $P 2_{1} / n$ (systematic absences: $h 0 l$ for $h+l$ odd, $0 k 0$ for k odd). Locally modified Syntex $P 2_{1}$ diffractometer, graphite monochromator. Cell parameters and orientation matrix by least-squares refinement using fifteen reflections, $15 \leq 2 \theta \leq 30^{\circ}$. Intensity data: $10562,2 \theta \leq 50^{\circ}(+h,+k, \pm l$ and $-h,-k$, $\pm l) ; \omega$ scans, $1.0^{\circ} \mathrm{min}^{-1}$, fixed scan width $1^{\circ}, 30 \mathrm{~s}$ background counts at the start and finish of each scan,

[^0]four check reflections, every 100 reflections, no unusual variation. No absorption correction, scaling of F_{o} by Wilson (1942) plot. Structure derivation: Patterson and density maps. Refinement: full-matrix least squares on F^{2}, all reflections, weights $w, w^{-1}=\left[s+r^{2} b+\right.$ $\left.(0 \cdot 02 s)^{2}\right] k^{4} /(\mathrm{Lp})^{2} \quad(s=$ scan counts, $b=$ background counts, $r=$ scan-to-background time ratio, $k=$ scale factor), anisotropic Gaussian amplitudes, atomic form factors from Stewart, Davidson \& Simpson (1965) for H, and International Tables for X-ray Crystallography (1962) for other atoms.

The coordinates of $\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{H}$ atoms were determined from difference maps, and the coordinates of the CpH atoms were calculated by assuming planar, trigonal geometry at $\mathrm{C}: \mathrm{C}-\mathrm{H}=0.95 \AA$, and isotropic $B=8 \AA^{2}$; these H atoms were not refined. The carbene H atom and the hydride atom on Zr were located from a difference map and refined with the non-hydrogen atoms. CRYRM program library (Duchamp, 1964); final $S=1.33$ (4871 total, averaged reflections, 415 parameters), $R=0.054$ and $R_{w^{\prime}}=0.066$ (the R 's based only on the 4584 reflections with $F_{o}^{2}>0$), maximum peak $0.7 \mathrm{e}^{\AA^{-3}}$ near W in final ΔF map, mean and maximum ratio of shift/error in final cycle: 0.03 and $0 \cdot 1$.

Discussion. The coordinates and U 's are given in Table $1 . \ddagger$ The $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring centroids (R_{1} and R_{2}), the O atom, and the hydride H are arranged pseudo-tetrahedrally around the Zr atom with an $R_{1}-\mathrm{Zr}-R_{2}$ angle of 138.5° and $\mathrm{O}-\mathrm{Zr}-\mathrm{H}$ angle equal to $98(1)^{\circ}$ (Fig. 1). The $R_{1}-\mathrm{Zr}-R_{2}$ angle is normal, cf. 139.2° in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}$ (pyridine)(C,O- $\eta^{2}-\mathrm{H}_{2} \mathrm{C}=\mathrm{CO}$) (Moore, Straus, Armantrout, Santarsiero, Grubbs \& Bercaw, 1983) and 139.2° in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}\left(\mu-\eta^{1}-\eta^{2}-\mathrm{CO}\right)(\mu-$ $\mathrm{CO}) \mathrm{CoCp}$ (Barger \& Bercaw, 1980), and is greater than the reported $\mathrm{Cp}-\mathrm{Zr}-\mathrm{Cp}$ angles, e.g. $126 \cdot 6^{\circ}$ for

[^1](c) 1983 International Union of Crystallography
$\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ (Prout, Cameron, Forder, Critchley, Denton \& Rees, 1974), 131.1° for $\mathrm{Cp}_{2} \mathrm{ZrF}_{2}$ (Bush \& Sim, 1971), 130.5° for $\mathrm{Cp}_{2} \mathrm{ZrCl}\left(\mathrm{SiPh}_{3}\right)$ (Muir, 1971), and 128.2° for $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CHPh}_{2}\right)_{2}$ (Atwood, Barker, Holton, Hunter, Lappert \& Pierce, 1977). The average $\mathrm{Zr}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ bond length is $2.5472(6] \AA^{*}$ (Table 2), cf., e.g., $2.54 \AA$ in $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{ZrN}_{2} \mathrm{l}_{2} \mu-\mathrm{N}_{2}\right.$ (Sanner, Manriquez, Marsh \& Bercaw, 1976) and $2.54 \AA$ in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}\left(\mu-\eta^{1}-\eta^{2}-\mathrm{CO}\right)(\mu$-CO) CoCp (Barger \& Bercaw, 1980).

* The expression for the standard deviation quoted in square brackets is given in Table 2, footnote (b).

Table 1. Atom coordinates and U_{eq} values

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{l} \sum_{j} U_{i j} a_{l}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	$x\left(\times 10^{4}\right)$	$y\left(\times 10^{5}\right)$	$z\left(\times 10^{4}\right)$	$U_{\text {eq }}\left(\AA^{2} \times 10^{4}\right)$
W	-2181.0 (3)	5720 (1)	8275.4 (4)	297 (1)
Zr	$1280 \cdot 0$ (6)	15168 (2)	7616.8 (8)	248 (1)
O	-105 (4)	11226 (12)	7516 (6)	374 (9)
C(11)	2753 (7)	9242 (17)	7982 (9)	351 (13)
C(12)	3495 (6)	11628 (19)	9333 (8)	342 (13)
C(13)	3943 (6)	14785 (19)	8609 (9)	377 (14)
C(14)	3498 (6)	14313 (18)	6836 (8)	300 (12)
C(15)	2692 (6)	10959 (17)	6423 (8)	301 (11)
C(21)	366 (7)	19550 (18)	5052 (8)	365 (14)
C(22)	1161 (7)	21856 (18)	6438 (9)	371 (13)
C(23)	474 (7)	21974 (18)	7649 (8)	358 (13)
C(24)	-744 (7)	19729 (17)	7042 (8)	323 (12)
C(25)	-815 (7)	18287 (17)	5432 (8)	343 (13)
C(M11)	2221 (8)	5335 (20)	8154 (11)	565 (18)
$\mathrm{C}(\mathrm{M12})$	3887 (8)	10787 (24)	11200 (10)	590 (20)
$\mathrm{C}(M 13)$	4909 (8)	17882 (24)	9645 (10)	584 (19)
C (M14)	4068 (7)	16401 (21)	5603 (21)	472 (15)
C(M15)	2054 (8)	9275 (21)	4659 (10)	509 (17)
C(M21)	553 (9)	19096 (24)	3348 (9)	584 (19)
$\mathrm{C}(M 22)$	2378 (8)	24332 (19)	6509 (11)	543 (17)
C(M23)	877 (9)	24420 (19)	9236 (10)	519 (18)
C(M24)	-1842 (7)	19230 (21)	7883 (10)	506 (16)
C(M25)	-1982 (8)	15894 (21)	4270 (10)	553 (19)
C(31)	-1280 (9)	10316 (20)	10288 (10)	504 (17)
C(32)	-2512 (9)	8939 (22)	10479 (11)	596 (18)
C(33)	-2268 (9)	5076 (21)	10981 (10)	525 (17)
C(34)	-902 (8)	4033 (20)	11021 (9)	482 (17)
C(35)	-306 (8)	7338 (22)	10627 (9)	463 (17)
C(41)	-3696 (9)	5081 (23)	5518 (11)	668 (23)
C(42)	-4453 (8)	4713 (26)	6623 (14)	781 (31)
C(43)	-3951 (8)	1445 (22)	7612 (12)	614 (21)
C(44)	-2855 (8)	-88 (19)	7197 (11)	520 (18)
C(45)	-2720 (8)	2085 (22)	5843 (10)	561 (19)
C	-1111 (7)	8572 (18)	7038 (9)	350 (13)
$\mathrm{H}(\mathrm{Zr})$	1698 (44)	16607 (116)	9988 (56)	1.5 (10) \dagger
$\mathrm{H}(\mathrm{C})$	-1309 (51)	8232 (136)	5801 (67)	$2 \cdot 6(13) \dagger$

\dagger Atom refined with isotropic $B\left(=8 \pi^{2} U^{2}\right), B$ given here.
Table 2. Important ring distances (\AA)

	$\mathrm{Zr}-\mathrm{C}(i j)$		W-C $(i j)$		$\Delta(a)$	
j	$i=1$	$i=2$	$i=3$	$i=4$	$i=1$	$i=2$
1	$2 \cdot 546$ (7)	2.545 (7)	2.294 (8)	2.292 (9)	0.19	0.21
2	2.551 (7)	2.562 (7)	2.278 (9)	2.279 (9)	0.12	0.21
3	2.554 (7)	2.562 (7)	2.287 (8)	2.278 (9)	0.10	0.15
4	2.570 (6)	2.538 (6)	2.285 (8)	2.265 (8)	0.41	0.07
5	$2 \cdot 502$ (6)	2.535 (7)	2.289 (8)	2.300 (8)	0.05	0.07
	ge (b) 2.54		2.28			

(a) Displacements of the methyl C atoms, $\mathrm{C}(M i)$, from the least-squares plane of the five ring atoms.
(b) Averages, with e.s.d.'s, over chemically equivalent distances. The standard deviation of the average is estimated as [$\sum_{k=1}^{n}\left(d_{k}-\right.$ $\bar{d})^{2} /\left.n(n-1)\right|^{1 / 2}$.

The Cp ring centroids (R_{3} and R_{4}) and the carbene C atom form a planar, distorted-trigonal arrangement around W with $R_{3}-\mathrm{W}-R_{4}=145.6^{\circ}$. The average $\mathrm{W}-\mathrm{C}(\mathrm{Cp})$ bond length is $2.285[3] \AA$ (Table 2), in the range 2.21 to $2.49 \AA$ (average $2.33 \AA$), determined by the 62 structures with a WCp fragment reported in the Cambridge Crystallographic Database.*

The $\mathrm{C}_{5} \mathrm{Me}_{5}$ rings are staggered, but the Cp rings are eclipsed (see Fig. 2). The Cp rings can vary, from an eclipsed to staggered orientation, depending on the crystal packing (Prout et al., 1974); in contrast, the $\mathrm{C}_{5} \mathrm{Me}_{5}$ rings are always staggered. The $\mathrm{C}_{5} \mathrm{Me}_{5}$ methyl

[^2]

Fig. 1. Skeletal view of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}=\mathrm{C}(\mathrm{H}) \mathrm{OZr}(\mathrm{H})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}$ with important distances (\AA) and angles.

Fig. 2. Stereoscopic view of the unit cell with \mathbf{c} horizontal and \mathbf{b} vertical.
groups are not coplanar with the rings, but are bent back away from Zr , on the average, by $0.16 \AA$ (Table 2). The greatest deviations are by $\mathrm{C}(\mathrm{M14})$ on one ring and $\mathrm{C}(M 21)$ and $\mathrm{C}(M 22)$ on the other ring [the shortest $\mathrm{CH}_{3} \cdots \mathrm{CH}_{3}$ contacts are, in fact, $\mathrm{C}(M 14) \cdots \mathrm{C}(M 22)$ 3.52 and $\mathrm{C}(M 14) \cdots \mathrm{C}(M 21) 3.56 \AA]$. The vector normals to the planes of our four $\left(\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{C}_{5} \mathrm{Me}_{5}\right)$ rings are nearly coincident with their $M-R_{i}$ vectors, forming angles of 0.5 and $0.7^{\circ}(\mathrm{Cp}$ around W$)$ and 1.2 and $0.9^{\circ}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right.$ around Zr$)$; the maximum tilt of the rings in WCp complexes (Cambridge Database) is almost 6°. The rings are each coplanar to within $\pm 0.02 \dot{A}$, and coordinate to the metals in the conventional pentahapto manner. The metal-carbon and ring bond lengths are normal (average inner-ring $\mathrm{C}-\mathrm{C}$ bond lengths in the $\mathrm{C}_{5} \mathrm{H}_{5}$ and $\mathrm{C}_{5} \mathrm{Me}_{5}$ rings are equal, $1.411[5]$ and $1.412[3] \AA$; average $\mathrm{C}-\mathrm{CH}_{3}$ bond lengths in $\mathrm{C}_{5} \mathrm{Me}_{5}$ rings $1.512[4] \AA$).

The skeletal view (Fig. 1) and stereoview of the unit cell (Fig. 2) reveal a remarkable feature of the structure: the two Cp ring centroids (R_{3} and R_{4}), $\mathrm{W}, \mathrm{Zr}, \mathrm{O}, \mathrm{C}$, $\mathrm{H}(\mathrm{C})$, and $\mathrm{H}(\mathrm{Zr})$ atoms are nearly coplanar, the maximum deviation being $0.12 \AA$ by R_{4} and $\mathrm{H}(\mathrm{Zr})$. This configuration presumably reflects minimization of non-bonding contacts between the permethylcyclopentadienyl methyl groups and the Cp rings on W [closest approach $\mathrm{C}(M 15) \cdots \mathrm{C}(35) 3.46, \mathrm{C}(M 24) \cdots$ $\mathrm{C}(31) 3.69, \mathrm{C}(M 15) \cdots \mathrm{C}(42) 3.74 \AA$); in an analogous manner, $\mathrm{C}_{5} \mathrm{Me}_{5}\left(\mathrm{Zr}_{1}\right) \cdots \mathrm{C}_{5} \mathrm{Me}_{5}\left(\mathrm{Zr}_{2}\right)$ interactions in $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{ZrN}_{2}\right]_{2} \mu-\mathrm{N}_{2}$ (Sanner et al., 1976) result in a similar molecular configuration, with $R-\mathrm{Zr}_{1}-\mathrm{Zr}_{2}-R$ dihedral angles of $70-90^{\circ}$ (we observe $R-\mathrm{W}-\mathrm{Zr}-R$ dihedral angles of $71 \cdot 9,73 \cdot 8,86 \cdot 7$, and 88.6°). Furthermore, the observed molecular configuration and bond lengths can be rationalized on electronic grounds: the π interaction of the carbene p orbital with the filled b_{2} orbital in the equatorial plane of the $\mathrm{Cp}_{2} \mathrm{~W}$ moiety [see Lauher \& Hoffmann (1976) for MO scheme of bent metallocenes], and a $\mathrm{Zr}-\mathrm{O} \pi$ interaction perpendicular to the $\mathrm{W}-\mathrm{C} \pi$ bond, leading to $R-\mathrm{W}-\mathrm{Zr}-R$ dihedral angles $\approx 90^{\circ}$. As to the valence-bond description, there are three major Lewis structures: (I) and (III), the formal tungsten carbenes; and (II), the Fischer-type carbene.

(I)

(II)

(III)

These bonding schemes are consistent with the short $\mathrm{W}-\mathrm{C} \quad$ bond, $\quad 2.008(7) \AA$, $\quad c f . \quad(\mathrm{CO})_{5} \mathrm{~W}=\mathrm{CPh}_{2}$, $2 \cdot 14$ (2) \AA (Casey, Burkhardt, Bunnell \& Calabrese, 1977), the relatively long $\mathrm{C}=\mathrm{O}$ bond, $1 \cdot 350$ (8) \AA (as found in alkoxy-substituted carbenes, $1.32-1.36 \AA$; Cardin, Cetinkaya \& Lappert, 1972), and the short
$\mathrm{Zr}-\mathrm{O}$ bond, 1.970 (4) \AA, cf. $\mathrm{Zr}(\mathrm{acac})_{4}$ ($2.20 \AA$; Clearfield, 1964) and $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \underset{\mathrm{ZrOC}\left[\mathrm{Zr}(\mathrm{I}) \mathrm{Cp}_{2}\right] \mathrm{C}(\mathrm{H}) \mathrm{O}}{ }$ (2.01 and $2.09 \AA$; Barger, Santarsiero \& Bercaw, 1982).

The $\mathrm{Zr}-\mathrm{H}$ bond length, 1.93 (4) \AA, is consistent with related $\quad\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{MH} \quad(M=\mathrm{Zr}$ or Hf$)$ cases: $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}^{5}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{PMe}_{2} \mathrm{CH}_{2}[1.89$ (4) \AA; Santarsiero, Moore \& Bercaw, 1982l, ($\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}(\mathrm{H})\left(\mathrm{C}, \mathrm{O}-\eta^{2}-\right.$ $\left.\mathrm{PMe}_{3} \mathrm{CH}=\mathrm{CO}\right)[1.90$ (2) \AA; Santarsiero, Moore \& Bercaw, 1982], and $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Hf}(\mathrm{H})\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)[1.86$ (7) \AA; Roddick, Santarsiero \& Bercaw, 1982]. Only a few hydride structures have been reported with early transition metals (see Teller \& Bau, 1981; Toogood \& Wallbridge, 1982). Two structures having Zr and a terminal hydride ligand have been reported: $\mathrm{HZr}\left(\mathrm{C}_{8} \mathrm{H}_{11}\right)(\text { dmpe })_{2}$ (Fischer et al., 1980) with a $\mathrm{Zr}-\mathrm{H}$ bond length of $1.67 \AA$ (the coordinates of the H atom were taken from a Fourier difference map and not refined), and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{ZrH}(\mu-\mathrm{H})\right]_{2}$ (Jones \& Peterson, 1981) with a $\mathrm{Zr}-\mathrm{H}$ (terminal) bond length of 1.78 (2) A. Finally, it should be noted that the hydride ligand occupies a stereochemically active position in the equatorial wedge of the $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}$ fragment, and the $\mathrm{O}-\mathrm{Zr}-\mathrm{H}$ angle of $98(1)^{\circ}$ can be reasonably compared to the $L-\mathrm{Zr}-L$ angle in other zirconocene complexes, e.g. $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}, 97.8(1)^{\circ}$ (Jeffrey, Lappert, Luong-Thi, Webb, Atwood \& Hunter, 1981) and $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CHPh}_{2}\right)_{2}, 95.5$ (4) ${ }^{\circ}$ (Atwood et al., 1977).

We thank Drs John Bercaw, Richard E. Marsh, and Verner Schomaker for helpful comments, Allison Kimball for help in preparing the manuscript, and Lillian Casler for preparation of the figures.

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., doubleday, A., Higgs, H., Hummelink, T., HummellinkPeters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
atwood, J. L., Barker, G. K., Holton, J., Hunter, W. E., Lappert, M. F. \& Pierce, R. (1977). J. Am. Chem. Soc. 99, 6645-6652.
Barger, P. T. \& Bercaw, J. E. (1980). J. Organomet. Chem. 201, C39-C44.
Barger, P. T., Santarsiero, B. D. \& Bercaw, J. E. (1982). Unpublished results.
Bush, M. A. \& Sim, G. A. (1971). J. Chem. Soc. A, pp. 2225-2229.
Cardin, D. J., Cetinkaya, T. J. \& Lappert, M. F. (1972). Chem. Rev. 72, 545-574.
Casey, C. P., Burkhardt, T. J., Bunnell, C. A. \& Calabrese, J. C. (1977). J. Am. Chem. Soc. 99, 2127-2133.

Clearfield, A. (1964). Rev. Pure Appl. Chem. 14, 91-108.
Duchamp, D. J. (1964). CRYRM Computing System. California Institute of Technology.
Fischer, M. B., James, E. J., McNeese, T. J., Nyburg, S. C., Posin, B., Wong-Ng, W. \& Wreford, S. S. (1980). J. Am. Chem. Soc. 102, 4941-4947.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 209 ff. Birmingham: Kynoch Press.

Jeffrey, J., Lappert, M. F., Luong-Thi, N. T., Webb, M., Atwood, J. L. \& Hunter, W. E. (1981). J. Chem. Soc. Dalton Trans. pp. 1593-1605.
Jones, S. B. \& Peterson, J. L. (1981). Inorg. Chem. 20, 2889-2894.
Lauher, J. W. \& Hoffmann, R. (1976). J. Am. Chem. Soc. 98, 1729-1742.
Moore, E. J., Straus, D. A., Armantrout, J., Santarsiero, B. D., Grubbs, R. H. \& Bercaw, J. E. (1983). J. Am. Chem. Soc. 105, 2068-2070.
Muir, K. M. (1971). J. Chem. Soc. A, pp. 2663-2666.
Prout, K., Cameron, t. S., Forder, R. A., Critchley, S. R., Denton, B. \& Rees, G. V. (1974). Acta Cryst. B30, 2290-2304.
Rodick, D. M., Santarsiero, B. D. \& Bercaw, J. E. (1982). Unpublished results.

Sanner, R. D., Manriquez, J. M., Marsh, R. E. \& Bercaw, J. E. (1976). J. Am. Chem. Soc. 98, 8351-8357.

Santarsiero, B. D., Moore, E. J. \& Bercaw, J. E. (1982). Unpublished results.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Teller, R. G. \& Bau, R. (1981). Struct. Bonding (Berlin), 44, 1-82.
Toogood, G. E. \& Wallbridge, M. G. H. (1982). Adv. Inorg. Chem. Radiochem. 25, 267-340.
Wilson, A. J. C. (1942). Nature (London), 150, 151-152.
Wolczanski, P. T. (1981). PhD Thesis, California Institute of Technology.
Wolczanski, P. T., Threlkel, R. S. \& Bercaw, J. E. (1979). J. Am. Chem. Soc. 101, 218-220.

Acta Cryst. (1983). C39, 1333-1335

The Structure of catena-Di- μ-chloro-iodo($\mathbf{1 H} \boldsymbol{H}^{+}$- \boldsymbol{S}-methylisothiocarbonohydrazidiumN) cadmium(II), $\mathbf{C}_{2} \mathbf{H}_{9} \mathrm{CdCl}_{\mathbf{2}} \mathrm{IN}_{4} \mathbf{S}$

By Francesco Bigoli, Maurizio Lanfranchi, Enrico Leporati and Maria Angela Pellinghelli
Istituto di Chimica Generale ed Inorganica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Via M.D'Azeglio 85, Parma, Italy
(Received 18 January 1983; accepted 10 May 1983)

Abstract

M_{r}=431.391\), orthorhombic, Pnma, $a=$ 17.702 (3), $\quad b=7.462$ (2), $\quad c=8.060$ (2) $\AA, \quad V=$ 1064.7 (4) $\AA^{3}, Z=4, T=295 \mathrm{~K}, D_{m}=2.68, \quad D_{x}=$ $2.69 \mathrm{Mg} \mathrm{m}^{-3}, \lambda\left(\mathrm{Mo}_{1} K \alpha_{1}\right)=0.70926 \AA, \mu\left(\mathrm{Mo}_{1} \alpha_{1}\right)=$ $55.652 \mathrm{~cm}^{-1}, F(000)=800, R=0.0496$ for 556 reflections. The structure consists of polymeric chains of edge-shared octahedra running parallel to \mathbf{b} held together by weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds and van der Waals contacts.

Introduction. This study is part of a systematic investigation on the behaviour of a thiocarbonohydrazide derivative (S-methylisothiocarbonohydrazide, S-tcaz) as ligand in metal complexes. To the authors' knowledge this structure has turned out to be the only example of a six-coordinate polymeric mixed-halogen cadmium(II) complex with a protonated ligand so far studied by X-ray analysis. The known CdCl_{3}^{-}complexes form polymeric chains of face-shared octahedra and the only studied complex of the $\left|\mathrm{CdCl}_{3} L \mathrm{H}\right|$ type is monomeric and tetrahedral.

Experimental. Colourless prismatic crystals grown by very slow evaporation from aqueous solution of cadmium dichloride and S-methylisothiocarbonohydrazide hydroiodide, D_{m} by flotation, crystal $0.30 \times$ $0.19 \times 0.13 \mathrm{~mm}$, Siemens AED diffractometer, Nb-

0108-2701/83/101333-03\$01.50
filtered Mo $K \alpha_{1}$, lattice parameters refined by least squares on 18 reflections $\left(8<\theta<15^{\circ}\right), 1125 \mathrm{hkl}$ (including 111 systematic absences), $0 \leq h \leq 21$, $0 \leq k \leq 8,0 \leq l \leq 9,3<\theta<25^{\circ}(\theta / 2 \theta$ scan), 1014 independent, 556 observed with $I \geq 2 \sigma(I)$ (1 standard reflection, checked after every 50 , no decomposition of specimen), Lp correction, absorption ignored, atomic scattering factors and anomalous-scattering corrections from International Tables for X-ray Crystallography (1974), heavy-atom technique, anisotropic full-matrix least squares (SHELX76, Sheldrick, 1976), ΔF synthesis not valuable in locating all H atoms, $\sum w|\Delta F|^{2}$ minimized, unit weights in the first cycles of refinement then $w=k\left|\sigma^{2}\left(F_{0}\right)+g F_{o}^{2}\right|^{-1} \quad(k=0.0421$, $g=0.119638$) in the last cycles, final $R=0.0496$, $R_{\mathrm{w}}=0.056$,* $(\Delta / \sigma)_{\max }=0.48$, max. height in final difference Fourier $=1.3 \mathrm{e} \AA^{-3}$, Cyber 76 computer of the Consorzio per la Gestione del Centro di Calcolo Elettronico Interuniversitario dell'Italia Nord-Orientale, Casalecchio, Bologna, with the financial support of the University of Parma.

[^3]© 1983 International Union of Crystallography

[^0]: *Contribution No. 6807 from the Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125 . This work was supported in part by Grants CHE-75-03056 and CHE-78-06659 from the National Science Foundation.
 \dagger Myron A. Bantrell Fellow, 1981-1983. Author to whom correspondence should be addressed.

[^1]: \ddagger Fractional atom coordinates for H atoms, anisotropic Gaussian amplitudes for non-hydrogen atoms, and a listing of structure factor amplitudes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38646 (30 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Data file current to May, 1982; see Allen et al. (1979).

[^3]: * Lists of calculated and observed structure factors and of anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38596 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

