Acta Cryst. (1983). C39, 1330–1333

A Zirconoxy Carbene from Monocarbonylbis(η -cyclopentadienyl)tungsten and Permethylzirconocene Dihydride: $(\eta^5 - C_5H_5)_2 W = C(H)OZr(H)(\eta^5 - C_5Me_5)_2^*$

BY P. T. WOLCZANSKI, R. S. THRELKEL AND B. D. SANTARSIERO[†]

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA

(Received 7 March 1983; accepted 1 June 1983)

Abstract. $C_{31}H_{42}OWZr$, $M_r = 705.75$, monoclinic, $P2_1/n_1$ a = 10.178 (3), b = 35.611 (14), c =8.293 (2) Å, $\beta = 109.93$ (2)°, V = 2825 (2) Å³, Z = 4, $D_x = 1.66 \text{ g cm}^{-3}$, Mo K α radiation, $\lambda = 0.71069 \text{ Å}$, $\mu = 45 \text{ cm}^{-1}$, $T \approx 290 \text{ K}$, F(000) = 1400; R = 0.054for the 4584 reflections with $F_o^2 > 0$ and 0.033 for the 3377 reflections with $F_o^2 > 3\sigma_{F^*}$ The short W–C bond length of 2.008 (7) Å, moderately long C=O bond length of 1.350 (8) Å, and relatively short Zr–O bond length of 1.970 (4) Å suggest a strong W=C bond, a strong Zr–O bond, and a reduced C–O π interaction, reflecting π backbonding from the electron-rich Cp₂W moiety and π donation to the electron-poor (η^{5}) $C_{s}Me_{s}$ ₂Zr group. The Zr-H bond length is 1.93 (4) Å.

Introduction. Permethylzirconocene dihydride, (η^{5}) C₅Me₅)₂ZrH₂, reduces CO stoichiometrically under mild conditions. Likewise, metal monocarbonyls react with the dihydride to generate zirconoxy carbenes. Here, we report the single-crystal X-ray structure of $(\eta^{5}-C_{5}H_{5})_{2}W=C(H)OZr(H)(\eta^{5}-C_{5}Me_{5})_{2}$, the product from the reaction of $Cp_2W(CO)$ (Cp: η^5 -C₅H₅), and (C₅Me₅)₂ZrH₂. The synthesis (Wolczanski, 1981) and a preliminary report of the X-ray structure have been published (Wolczanski, Threlkel & Bercaw, 1979).

Experimental. Maroon crystals, air-sensitive. Specimen, $0.3 \times 0.3 \times 0.5$ mm, sealed in glass capillary under N₂. Space group by oscillation and Weissenberg photographs, $P2_1/n$ (systematic absences: h0l for h+lodd, 0k0 for k odd). Locally modified Syntex P2, diffractometer, graphite monochromator. Cell parameters and orientation matrix by least-squares refinement using fifteen reflections, $15 \le 2\theta \le 30^{\circ}$. Intensity data: 10 562, $2\theta \le 50^{\circ}$ (+h, +k, $\pm l$ and -h, -k, $\pm h$; ω scans, 1.0° min⁻¹, fixed scan width 1° , 30s background counts at the start and finish of each scan, four check reflections, every 100 reflections, no unusual variation. No absorption correction, scaling of F_{o} by Wilson (1942) plot. Structure derivation: Patterson and density maps. Refinement: full-matrix least squares on F^2 , all reflections, weights $w, w^{-1} = [s + r^2 b + c^2 b]$ $(0.02s)^2 k^4 / (Lp)^2$ (s = scan counts, b = background counts, r = scan-to-background time ratio, k = scalefactor), anisotropic Gaussian amplitudes, atomic form factors from Stewart, Davidson & Simpson (1965) for H, and International Tables for X-ray Crystallography (1962) for other atoms.

The coordinates of C₅Me₅ H atoms were determined from difference maps, and the coordinates of the Cp H atoms were calculated by assuming planar, trigonal geometry at C: C–H = 0.95 Å, and isotropic $B=8Å^2$; these H atoms were not refined. The carbene H atom and the hydride atom on Zr were located from a difference map and refined with the non-hydrogen atoms. CRYRM program library (Duchamp, 1964); final S = 1.33 (4871 total, averaged reflections, 415 parameters), R = 0.054 and $R_w = 0.066$ (the *R*'s based only on the 4584 reflections with $F_o^2 > 0$), maximum peak 0.7 e Å⁻³ near W in final ΔF map, mean and maximum ratio of shift/error in final cycle: 0.03 and 0.1.

Discussion. The coordinates and U's are given in Table 1.[‡] The C₅Me₅ ring centroids (R_1 and R_2), the O atom, and the hydride H are arranged pseudo-tetrahedrally around the Zr atom with an R_1 –Zr– R_2 angle of 138.5° and O-Zr-H angle equal to 98 (1)° (Fig. 1). The R_1 -Zr- R_2 angle is normal, cf. 139.2° in $(C,Me_{2})_{2}Zr(pyridine)(C,O-\eta^{2}-H_{2}C=CO)$ (Moore. Straus, Armantrout, Santarsiero, Grubbs & Bercaw, 1983) and 139.2° in $(C_5Me_5)_2 Zr(\mu - \eta^1 - \eta^2 - CO)(\mu - \eta^2 - M_2)$ CO)CoCp (Barger & Bercaw, 1980), and is greater than the reported Cp-Zr-Cp angles, e.g. 126.6° for

0108-2701/83/101330-04\$01.50 © 1983 International Union of Crystallography

^{*}Contribution No. 6807 from the Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125. This work was supported in part by Grants CHE-75-03056 and CHE-78-06659 from the National Science Foundation.

[†]Myron A. Bantrell Fellow, 1981-1983. Author to whom correspondence should be addressed.

[‡] Fractional atom coordinates for H atoms, anisotropic Gaussian amplitudes for non-hydrogen atoms, and a listing of structure factor amplitudes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38646 (30 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

Cp₂ZrCl₂ (Prout, Cameron, Forder, Critchley, Denton & Rees, 1974), 131·1° for Cp₂ZrF₂ (Bush & Sim, 1971), 130·5° for Cp₂ZrCl(SiPh₃) (Muir, 1971), and 128·2° for Cp₂Zr(CHPh₂)₂ (Atwood, Barker, Holton, Hunter, Lappert & Pierce, 1977). The average Zr-C(C₅Me₅) bond length is 2·5472(6] Å* (Table 2), cf., e.g., 2·54 Å in $[(C_5Me_5)_2ZrN_2]_2\mu$ -N₂ (Sanner, Manriquez, Marsh & Bercaw, 1976) and 2·54 Å in $(C_5Me_5)_2Zr(\mu-\eta^1-\eta^2-CO)(\mu-CO)CoCp$ (Barger & Bercaw, 1980).

* The expression for the standard deviation quoted in square brackets is given in Table 2, footnote (b).

Table	1. Atom	coordin	ates and	U_{eo}	values
-------	---------	---------	----------	----------	--------

$U_{\rm eq} = \frac{1}{3} \sum_l \sum_j U_{ij} a_l^* a_j^* \mathbf{a}_l \cdot \mathbf{a}_j.$						
	$x(\times 10^{4})$	$y(\times 10^{5})$	$z(\times 10^{4})$	$U_{ m eq}~({ m \AA}^2 imes~10^4)$		
w	-2181.0(3)	5720(1)	8275-4 (4)	297 (1)		
Zr	1280-0 (6)	15168 (2)	7616-8 (8)	248 (1)		
0	-105 (4)	11226 (12)	7516 (6)	374 (9)		
- C(1)	2753 (7)	9242 (17)	7982 (9)	351 (13)		
C(12)	3495 (6)	11628 (19)	9333 (8)	342 (13)		
C(13)	3943 (6)	14785 (19)	8609 (9)	377 (14)		
C(14)	3498 (6)	14313 (18)	6836 (8)	300 (12)		
C(15)	2692 (6)	10959 (17)	6423 (8)	301 (11)		
C(21)	366 (7)	19550 (18)	5052 (8)	365 (14)		
C(22)	1161 (7)	21856 (18)	6438 (9)	371 (13)		
C(23)	474 (7)	21974 (18)	7649 (8)	358 (13)		
C(24)	-744 (7)	19729 (17)	7042 (8)	323 (12)		
C(25)	-815 (7)	18287 (17)	5432 (8)	343 (13)		
C(M11)	2221 (8)	5335 (20)	8154 (11)	565 (18)		
C(M12)	3887 (8)	10787 (24)	11200 (10)	590 (20)		
C(M13)	4909 (8)	17882 (24)	9645 (10)	584 (19)		
C(M14)	4068 (7)	16401 (21)	5603 (21)	472 (15)		
C(M15)	2054 (8)	9275 (21)	4659 (10)	509 (17)		
C(M21)	553 (9)	19096 (24)	3348 (9)	584 (19)		
C(M22)	2378 (8)	24332 (19)	6509 (11)	543 (17)		
C(M23)	877 (9)	24420 (19)	9236 (10)	519 (18)		
C(M24)	-1842 (7)	19230 (21)	7883 (10)	506 (16)		
C(M25)	-1982 (8)	15894 (21)	4270 (10)	553 (19)		
C(31)	-1280 (9)	10316 (20)	10288 (10)	504 (17)		
C(32)	-2512 (9)	8939 (22)	10479 (11)	596 (18)		
C(33)	-2268 (9)	5076 (21)	10981 (10)	525 (17)		
C(34)	-902 (8)	4033 (20)	11021 (9)	482 (17)		
C(35)	-306 (8)	7338 (22)	10627 (9)	463 (17)		
C(41)	-3696 (9)	5081 (23)	5518 (11)	668 (23)		
C(42)	-4453 (8)	4713 (26)	6623 (14)	781 (31)		
C(43)	-3951 (8)	1445 (22)	7612 (12)	614 (21)		
C(44)	-2855 (8)	-88 (19)	7197 (11)	520 (18)		
C(45)	-2720 (8)	2085 (22)	5843 (10)	561 (19)		
С	-1111 (7)	8572 (18)	7038 (9)	350 (13)		
H(Zr)	1698 (44)	16607 (116)	9988 (56)	1.5 (10)†		
H(C)	-1309(51)	8232 (136)	5801 (67)	$2.6(13)^{+}$		

[†] Atom refined with isotropic $B(=8\pi^2 U^2)$, B given here.

Table 2. Important ring distances (Å)

	Zr-C(ij)		W-C(ij)		⊿(a)	
i	<i>i</i> =1	i=2	i=3	<i>i</i> =4	<i>i</i> =1	i=2
ĩ	2.546 (7)	2.545 (7)	2.294 (8)	2.292 (9)	0.19	0.21
2	2.551 (7)	2.562 (7)	2.278 (9)	2.279 (9)	0.12	0.21
3	2.554 (7)	2.562 (7)	2.287 (8)	2.278 (9)	0.10	0.15
4	2.570 (6)	2.538 (6)	2.285 (8)	2.265 (8)	0.41	0.07
5	2.502 (6)	2.535 (7)	2.289 (8)	2.300 (8)	0.05	0.07
Ave	erage (b) 2.54	7 [6]	2.28	5 [3]	0.	16

(a) Displacements of the methyl C atoms, C(Mij), from the least-squares plane of the five ring atoms.

(b) Averages, with e.s.d.'s, over chemically equivalent distances. The standard deviation of the average is estimated as $[\sum_{k=1}^{n} (d_k - d)^2/n(n-1)]^{1/2}$.

The Cp ring centroids $(R_3 \text{ and } R_4)$ and the carbene C atom form a planar, distorted-trigonal arrangement around W with $R_3 - W - R_4 = 145.6^\circ$. The average W-C(Cp) bond length is 2.285[3] Å (Table 2), in the range 2.21 to 2.49 Å (average 2.33 Å), determined by the 62 structures with a WCp fragment reported in the Cambridge Crystallographic Database.*

The C_5Me_5 rings are staggered, but the Cp rings are eclipsed (see Fig. 2). The Cp rings can vary, from an eclipsed to staggered orientation, depending on the crystal packing (Prout *et al.*, 1974); in contrast, the C_5Me_5 rings are always staggered. The C_5Me_5 methyl

* Data file current to May, 1982; see Allen et al. (1979).

Fig. 1. Skeletal view of $(\eta^5 \cdot C_5 H_5)_2 W = C(H)OZr(H)(\eta^5 \cdot C_5 Me_5)_2$ with important distances (Å) and angles.

Fig. 2. Stereoscopic view of the unit cell with **c** horizontal and **b** vertical.

groups are not coplanar with the rings, but are bent back away from Zr, on the average, by 0.16 Å (Table 2). The greatest deviations are by C(M14) on one ring and C(M21) and C(M22) on the other ring [the shortest $CH_3 \cdots CH_3$ contacts are, in fact, $C(M14) \cdots C(M22)$ 3.52 and $C(M14)\cdots C(M21) 3.56$ Å]. The vector normals to the planes of our four (C₅H₅, C₅Me₅) rings are nearly coincident with their $M-R_i$ vectors, forming angles of 0.5 and 0.7° (Cp around W) and 1.2 and 0.9° (C₅Me₅ around Zr); the maximum tilt of the rings in WCp complexes (Cambridge Database) is almost 6°. The rings are each coplanar to within ± 0.02 Å, and coordinate to the metals in the conventional pentahapto manner. The metal-carbon and ring bond lengths are normal (average inner-ring C-C bond lengths in the C₄H₅ and C₅Me₅ rings are equal, 1.411[5] and 1.412[3] Å; average C-CH₃ bond lengths in C₅Me₅ rings 1.512 [4] Å).

The skeletal view (Fig. 1) and stereoview of the unit cell (Fig. 2) reveal a remarkable feature of the structure: the two Cp ring centroids (R_1 and R_4), W, Zr, O, C, H(C), and H(Zr) atoms are nearly coplanar, the maximum deviation being 0.12 Å by R_4 and H(Zr). This configuration presumably reflects minimization of non-bonding contacts between the permethylcyclopentadienyl methyl groups and the Cp rings on W [closest approach $C(M15)\cdots C(35)$ 3.46, $C(M24)\cdots$ C(31) 3.69, $C(M15)\cdots C(42)$ 3.74 Å]; in an analogous manner, $C_5Me_5(Zr_1)\cdots C_5Me_5(Zr_2)$ interactions in $[(C_5Me_5)_2ZrN_2]_2\mu$ -N₂ (Sanner et al., 1976) result in a similar molecular configuration, with $R-Zr_1-Zr_2-R$ dihedral angles of 70-90° (we observe R-W-Zr-R dihedral angles of 71.9, 73.8, 86.7, and 88.6°). Furthermore, the observed molecular configuration and bond lengths can be rationalized on electronic grounds: the π interaction of the carbene p orbital with the filled b_2 orbital in the equatorial plane of the Cp₂W moiety [see Lauher & Hoffmann (1976) for MO scheme of bent metallocenes], and a Zr–O π interaction perpendicular to the W–C π bond, leading to R-W-Zr-R dihedral angles $\approx 90^{\circ}$. As to the valence-bond description, there are three major Lewis structures: (I) and (III), the formal tungsten carbenes; and (II), the Fischer-type carbene.

These bonding schemes are consistent with the short W-C bond, 2.008 (7) Å, *cf.* (CO)₅W=CPh₂, 2.14 (2) Å (Casey, Burkhardt, Bunnell & Calabrese, 1977), the relatively long C=O bond, 1.350 (8) Å (as found in alkoxy-substituted carbenes, 1.32-1.36 Å; Cardin, Cetinkaya & Lappert, 1972), and the short

Zr-O bond, 1.970 (4) Å, *cf.* $Zr(acac)_4$ (2.20 Å; Clearfield, 1964) and $(C_5Me_5)_2 ZrOC[Zr(I)Cp_2]C(H)O$ (2.01 and 2.09 Å; Barger, Santarsiero & Bercaw, 1982).

The Zr-H bond length, 1.93 (4) Å, is consistent with related $(C_5Me_5)_2MH$ (M = Zr or Hf) cases: $(C_5Me_5)_2Zr(H)CH_2PMe_2CH_2$ [1.89 (4) Å; Santarsiero, Moore & Bercaw, 1982], $(C_5Me_5)_2Zr(H)(C,O-\eta^2-\eta^2)$ PMe₃CH=CO) [1.90 (2) Å; Santarsiero, Moore & Bercaw, 1982], and $(C_{5}Me_{5})_{2}Hf(H)(C_{3}H_{5})$ [1.86 (7) Å; Roddick, Santarsiero & Bercaw, 1982]. Only a few hydride structures have been reported with early transition metals (see Teller & Bau, 1981; Toogood & Wallbridge, 1982). Two structures having Zr and a terminal hydride ligand have been reported: $HZr(C_8H_{11})(dmpe)_2$ (Fischer *et al.*, 1980) with a Zr-H bond length of 1.67 Å (the coordinates of the H atom were taken from a Fourier difference map and not refined), and $[(C_{4}Me)_{2}ZrH(\mu-H)]_{2}$ (Jones & Peterson, 1981) with a Zr-H(terminal) bond length of 1.78 (2) Å. Finally, it should be noted that the hydride ligand occupies a stereochemically active position in the equatorial wedge of the (C,Me,),Zr fragment, and the O-Zr-H angle of 98 (1)° can be reasonably compared to the L-Zr-L angle in other zirconocene complexes, e.g. Cp₂Zr(CH₂SiMe₃)₂, 97.8 (1)° (Jeffrey, Lappert, Luong-Thi, Webb, Atwood & Hunter, 1981) and Cp₂Zr(CHPh₂)₂, 95.5 (4)° (Atwood et al., 1977).

We thank Drs John Bercaw, Richard E. Marsh, and Verner Schomaker for helpful comments, Allison Kimball for help in preparing the manuscript, and Lillian Casler for preparation of the figures.

References

- Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummellink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). Acta Cryst. B35, 2331–2339.
- ATWOOD, J. L., BARKER, G. K., HOLTON, J., HUNTER, W. E., LAPPERT, M. F. & PIERCE, R. (1977). J. Am. Chem. Soc. 99, 6645–6652.
- BARGER, P. T. & BERCAW, J. E. (1980). J. Organomet. Chem. 201, C39-C44.
- BARGER, P. T., SANTARSIERO, B. D. & BERCAW, J. E. (1982). Unpublished results.
- BUSH, M. A. & SIM, G. A. (1971). J. Chem. Soc. A, pp. 2225–2229.
- CARDIN, D. J., CETINKAYA, T. J. & LAPPERT, M. F. (1972). Chem. Rev. 72, 545-574.
- CASEY, C. P., BURKHARDT, T. J., BUNNELL, C. A. & CALABRESE, J. C. (1977). J. Am. Chem. Soc. 99, 2127–2133.
- CLEARFIELD, A. (1964). Rev. Pure Appl. Chem. 14, 91-108.
- DUCHAMP, D. J. (1964). CRYRM Computing System. California Institute of Technology.
- FISCHER, M. B., JAMES, E. J., MCNEESE, T. J., NYBURG, S. C., POSIN, B., WONG-NG, W. & WREFORD, S. S. (1980). J. Am. Chem. Soc. 102, 4941–4947.
- International Tables for X-ray Crystallography (1962). Vol. III, pp. 209 ff. Birmingham: Kynoch Press.

- JONES, S. B. & PETERSON, J. L. (1981). Inorg. Chem. 20, 2889–2894.
- LAUHER, J. W. & HOFFMANN, R. (1976). J. Am. Chem. Soc. 98, 1729–1742.
- MOORE, E. J., STRAUS, D. A., ARMANTROUT, J., SANTARSIERO, B. D., GRUBBS, R. H. & BERCAW, J. E. (1983). J. Am. Chem. Soc. 105, 2068–2070.
- MUIR, K. M. (1971). J. Chem. Soc. A, pp. 2663-2666.
- PROUT, K., CAMERON, T. S., FORDER, R. A., CRITCHLEY, S. R.,
- DENTON, B. & REES, G. V. (1974). *Acta Cryst.* B**30**, 2290–2304. RODDICK, D. M., SANTARSIERO, B. D. & BERCAW, J. E. (1982). Unpublished results.

- SANNER, R. D., MANRIQUEZ, J. M., MARSH, R. E. & BERCAW, J. E. (1976). J. Am. Chem. Soc. 98, 8351–8357.
- SANTARSIERO, B. D., MOORE, E. J. & BERCAW, J. E. (1982). Unpublished results.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- TELLER, R. G. & BAU, R. (1981). Struct. Bonding (Berlin), 44, 1-82.
- TOOGOOD, G. E. & WALLBRIDGE, M. G. H. (1982). Adv. Inorg. Chem. Radiochem. 25, 267–340.
- WILSON, A. J. C. (1942). Nature (London), 150, 151-152.
- WOLCZANSKI, P. T. (1981). PhD Thesis, California Institute of Technology.
- WOLCZANSKI, P. T., THRELKEL, R. S. & BERCAW, J. E. (1979). J. Am. Chem. Soc. 101, 218-220.

Acta Cryst. (1983). C39, 1333–1335

The Structure of *catena*-Di- μ -chloro-iodo(1 H^+ -S-methylisothiocarbonohydrazidium-N)cadmium(II), C₂H₉CdCl₂IN₄S

BY FRANCESCO BIGOLI, MAURIZIO LANFRANCHI, ENRICO LEPORATI AND MARIA ANGELA PELLINGHELLI

Istituto di Chimica Generale ed Inorganica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Via M.D'Azeglio 85, Parma, Italy

(Received 18 January 1983; accepted 10 May 1983)

Abstract. $M_r = 431.391$, orthorhombic, *Pnma*, a = 17.702 (3), b = 7.462 (2), c = 8.060 (2) Å, V = 1064.7 (4) Å³, Z = 4, T = 295 K, $D_m = 2.68$, $D_x = 2.69$ Mg m⁻³, λ (Mo $K\alpha_1$) = 0.70926 Å, μ (Mo $K\alpha_1$) = 55.652 cm⁻¹, F(000) = 800, R = 0.0496 for 556 reflections. The structure consists of polymeric chains of edge-shared octahedra running parallel to **b** held together by weak N-H…Cl and N-H…I hydrogen bonds and van der Waals contacts.

Introduction. This study is part of a systematic investigation on the behaviour of a thiocarbonohydrazide derivative (S-methylisothiocarbonohydrazide, S-tcaz) as ligand in metal complexes. To the authors' knowledge this structure has turned out to be the only example of a six-coordinate polymeric mixed-halogen cadmium(II) complex with a protonated ligand so far studied by X-ray analysis. The known $CdCl_3$ complexes form polymeric chains of face-shared octahedra and the only studied complex of the $|CdCl_3LH|$ type is monomeric and tetrahedral.

Experimental. Colourless prismatic crystals grown by very slow evaporation from aqueous solution of cadmium dichloride and S-methylisothiocarbono-hydrazide hydroiodide, D_m by flotation, crystal $0.30 \times 0.19 \times 0.13$ mm, Siemens AED diffractometer, Nb-

squares on 18 reflections ($8 < \theta < 15^{\circ}$), 1125 hkl (including 111 systematic absences), $0 \le h \le 21$, $0 \le k \le 8$, $0 \le l \le 9$, $3 < \theta < 25^{\circ}$ ($\theta/2\theta$ scan), 1014 independent, 556 observed with $I \ge 2\sigma(I)$ (1 standard reflection, checked after every 50, no decomposition of specimen), Lp correction, absorption ignored, atomic scattering factors and anomalous-scattering corrections from International Tables for X-ray Crystallography (1974), heavy-atom technique, anisotropic full-matrix least squares (SHELX76, Sheldrick, 1976), ΔF synthesis not valuable in locating all H atoms. $\sum w |\Delta F|^2$ minimized, unit weights in the first cycles of refinement then $w = k [\sigma^2(F_o) + g F_o^2]^{-1}$ (k = 0.0421,g = 0.119638) in the last cycles, final R = 0.0496, $R_w = 0.056$,* $(\Delta/\sigma)_{max} = 0.48$, max. height in final difference Fourier = 1.3 e Å⁻³, Cyber 76 computer of the Consorzio per la Gestione del Centro di Calcolo Elettronico Interuniversitario dell'Italia Nord-Orientale, Casalecchio, Bologna, with the financial support of the University of Parma.

filtered Mo $K\alpha_1$, lattice parameters refined by least

^{*} Lists of calculated and observed structure factors and of anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38596 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.